Aplikasi Serat Alam Muntingia calabura sebagai Pengisi dalam Biokomposit Bermatriks Polivinil Alkohol (PVA): Karakteristik Sifat Kuat Tarik dan Permukaan Patahan

##plugins.themes.academic_pro.article.main##

Melbi Mahardika
Mochamad Asrofi
Afril Priyanto
Yuni Hermawan
Salahuddin Junus
Santoso Mulyadi
Sujito Sujito
Devita Amelia

Abstract

Pemanfaatan serat alam Muntingia calabura sebagai pengisi bahan biokomposit belum dimanfaatkan secara optimal. Penggunaan serat alam ini memiliki potensi yang baik sebagai bahan pengisi biokomposit. Tujuan penelitian ini adalah untuk mengetahui pengaruh volume fraksi serat terhadap kekuatan tarik dan permukaan patahan biokomposit Polivinil Alkohol (PVA) dan Muntingia calabura. Volume fraksi serat di dalam PVA divariasikan 0%, 2%, 4%, 6% dan 8% (dari berat kering PVA). Pembuatan biokomposit menggunakan metode penuangan larutan gelatin. Biokomposit dikeringkan dalam suhu 70 ᵒC selama 12 jam. Setelah itu, spesimen biokomposit dipotong sesuai standar American Society for Testing and Materials (ASTM) D882-18. Hasil pengujian tarik menunjukkan bahwa peningkatan volume fraksi serat di dalam PVA mengakibatkan penurunan kekuatan tarik. Nilai kuat tarik tertinggi terdapat pada spesimen film PVA murni adalah 6,8 MPa. Penambahan serat sebesar 2% menyebabkan penurunan sebesar 14,7% dari nilai kuat tarik film PVA. Fenomena tersebut juga terjadi pada penambahan serat 4 – 8% di dalam matriks PVA. Hal tersebut didukung oleh pengataman Scanning Electron Microscope (SEM) yang menunjukkan adanya penggumpalan serat di dalam matriks.

##plugins.themes.academic_pro.article.details##

Author Biographies

Melbi Mahardika, Institut Teknologi Sumatera

Program Studi Teknik Biosistem

Mochamad Asrofi, Universitas Jember

Jurusan Teknik Mesin

Afril Priyanto, Universitas Jember

Jurusan Teknik Mesin

Yuni Hermawan, Universitas Jember

Jurusan Teknik Mesin

Salahuddin Junus, Universitas Jember

Jurusan Teknik Mesin

Santoso Mulyadi, Universitas Jember

Jurusan Teknik Mesin

Sujito Sujito, Universitas Jember

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Devita Amelia, Institut Teknologi Sumatera

Program Studi Teknik Kimia

How to Cite
Mahardika, M., Asrofi, M., Priyanto, A., Hermawan, Y., Junus, S., Mulyadi, S., Sujito, S., & Amelia, D. (2021). Aplikasi Serat Alam Muntingia calabura sebagai Pengisi dalam Biokomposit Bermatriks Polivinil Alkohol (PVA): Karakteristik Sifat Kuat Tarik dan Permukaan Patahan. Agroteknika, 4(1), 43-52. https://doi.org/10.32530/agroteknika.v4i1.103

References

Abral, H., Ariksa, J., Mahardika, M., Handayani, D., Aminah, I., Sandrawati, N., Sapuan, S. M., & Ilyas, R. A. (2019a). Highly transparent and antimicrobial PVA based bionanocomposites reinforced by ginger nanofiber. Polymer Testing, 106186. https://doi.org/10.1016/j.polymertesting.2019.106186
Abral, H., Mahardika, M., Handayani, D., Sugiarti, E., & Muslimin, A. N. (2019b). Characterization of disintegrated bacterial cellulose nanofibers/PVA bionanocomposites prepared via ultrasonication. International Journal of Biological Macromolecules, 135, 591–599. https://doi.org/10.1016/j.ijbiomac.2019.05.178
Abral, H., Soni Satria, R., Mahardika, M., Hafizulhaq, F., Affi, J., Asrofi, M., Handayani, D., Sapuan, S. M., Stephane, I., Sugiarti, E., & Muslimin, A. N. (2019c). Comparative Study of the Physical and Tensile Properties of Jicama (Pachyrhizus erosus) Starch Film Prepared Using Three Different Methods. Starch/Staerke, 1–31. https://doi.org/10.1002/star.201800224
Alias, N. F., Ismail, H., & Wahab, M. K. A. (2017). Properties of polyvinyl alcohol/palm kernel shell powder biocomposites and their hybrid composites with halloysite nanotubes. BioResources, 12(4), 9103–9117.
Asrofi, M., Dwilaksana, D., Abral, H., & Fajrul, R. (2019). Tensile, thermal, and moisture absorption properties of polyvinyl alcohol (PVA)/bengkuang (pachyrhizuserosus) starch blend films. Material Science Research India, 16(1), 70–75. http://dx.doi.org/10.13005/msri/160110
Asrofi, M., Sapuan, S. M., Ilyas, R. A., & Ramesh, M. (2020). Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: Effect of time duration of ultrasonication (Bath-Type). Materials Today: Proceedings.Https://doi.org/10.1016/j.matpr.2020.07.254
Asrofi, M., Syafri, E., Sapuan, S. M., & Ilyas, R. A. (2020). Improvement of Biocomposite Properties Based Tapioca Starch and Sugarcane Bagasse Cellulose Nanofibers. Key Engineering Materials, 849, 96–101.
Borrelle, S. B., Ringma, J., Law, K. L., Monnahan, C. C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G. H., & Hilleary, M. A. (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369(6510), 1515–1518. DOI: 10.1126/science.aba3656
Fahma, F., Sunarti, T. C., Indriyani, S. M., & Lisdayana, N. (2017). Thermoplastic cassava starch-PVA composite films with cellulose nanofibers from oil palm empty fruit bunches as reinforcement agent. International Journal of Polymer Science, 2017. https://doi.org/10.1155/2017/2745721
Gaikwad, K. K., Lee, J. Y., & Lee, Y. S. (2016). Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application. Journal of Food Science and Technology, 53(3), 1608–1619.
Guimarães Jr, M., Botaro, V. R., Novack, K. M., Teixeira, F. G., & Tonoli, G. H. D. (2015). Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Industrial Crops and Products, 70, 72–83. https://doi.org/10.1016/j.indcrop.2015.03.014
Ilyas, R. A., Sapuan, S. M., Norrrahim, M. N. F., Yasim-Anuar, T. A. T., Kadier, A., Kalil, M. S., Atikah, M. S. N., Ibrahim, R., Asrofi, M., & Abral, H. (2020). Nanocellulose/starch biopolymer nanocomposites: Processing, manufacturing, and applications. In Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (pp. 65–88). Elsevier. https://doi.org/10.1016/B978-0-12-819661-8.00006-8
Mahardika, M., Abral, H., Kasim, A., Arief, S., Hafizulhaq, F., & Asrofi, M. (2019). Properties of cellulose nanofiber/bengkoang starch bionanocomposites: Effect of fiber loading. LWT, 108554. https://doi.org/10.1016/j.lwt.2019.108554
Mandal, A., & Chakrabarty, D. (2014). Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly (vinyl alcohol) and nanocellulose from sugarcane bagasse. Journal of Industrial and Engineering Chemistry, 20(2), 462–473. https://doi.org/10.1016/j.jiec.2013.05.003
Mittal, A., Garg, S., Kohli, D., Maiti, M., Jana, A. K., & Bajpai, S. (2016). Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films. Carbohydrate Polymers, 151, 926–938. https://doi.org/10.1016/j.carbpol.2016.06.037
Mukaffa, H., Asrofi, M., Hermawan, Y., Qoryah, R. D. H., Sapuan, S. M., Ilyas, R. A., & Atiqah, A. (2021). Effect of alkali treatment of piper betle fiber on tensile properties as biocomposite based polylactic acid: Solvent cast-film method. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.02.218
Popescu, M.-C., Dogaru, B.-I., Goanta, M., & Timpu, D. (2018). Structural and morphological evaluation of CNC reinforced PVA/Starch biodegradable films. International Journal of Biological Macromolecules, 116, 385–393. https://doi.org/10.1016/j.ijbiomac.2018.05.036
Puttaswamy, M., Srinikethan, G., & Shetty, V. (2017). Biocomposite composed of PVA reinforced with cellulose microfibers isolated from biofuel industrial dissipate: Jatropha Curcus L. seed shell. Journal of Environmental Chemical Engineering, 5(2), 1990–1997. https://doi.org/10.1016/j.jece.2017.04.004
Srivastava, K. R., Singh, M. K., Mishra, P. K., & Srivastava, P. (2019). Pretreatment of banana pseudostem fibre for green composite packaging film preparation with polyvinyl alcohol. Journal of Polymer Research, 26(4), 1–11.https://doi.org/10.1007/s10965-019-1751-3
Syafri, E., Wahono, S., Irwan, A., Asrofi, M., Sari, N. H., & Fudholi, A. (2019). Characterization and properties of cellulose microfibers from water hyacinth filled sago starch biocomposites. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2019.06.174
Thomas, N., Rusdin, A., Tulsyahra, M., Wathoni, N., & Kuswandi, A. (2020). Accelerated wound healing ability of Jatropha sap by iota carrageenan-poly (vinyl alcohol) hydrogel film. Journal of Advanced Pharmaceutical Technology & Research, 11(4), 226. doi: 10.4103/japtr.JAPTR_11_20
Yu, Z., Li, B., Chu, J., & Zhang, P. (2018). Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydrate Polymers, 184, 214–220. https://doi.org/10.1016/j.polymertesting.2019.106186