Artikel Review: Parameter Operasional Pirolisis Biomassa

##plugins.themes.academic_pro.article.main##

Sri Aulia Novita
Santosa Santosa
Nofialdi Nofialdi
Andasuryani Andasuryani
Ahmad Fudholi

Abstract

Artikel ini menjelaskan definisi pirolisis dan pentingnya proses pirolisis dalam konversi termokimia biomassa menjadi bahan bakar. Teknologi pirolisis berpotensi untuk dikembangkan karena ketersediaan sumber bahan biomassa yang sangat melimpah, teknologinya mudah untuk dikembangkan, bersifat ramah lingkungan dan menguntungkan secara ekonomi. Dalam teknik pirolisis, beberapa parameter yang mempengaruhi proses pirolisis adalah perlakuan awal biomassa, kadar air dan ukuran partikel bahan, komposisi senyawa biomassa, suhu, laju pemanasan, laju alir gas, waktu tinggal, jenis pirolisis, jenis reaktor pirolisis dan final produk pirolisis. Reaktor pirolisis adalah alat pengurai senyawa-senyawa organik yang dilakukan dengan proses pemanasan tanpa berhubungan langsung dengan udara luar dengan suhu 300-6000C. Beberapa jenis reaktor pirolisis yang sering digunakan adalah Fixed-Bed Pyrolyzer, Bubbling Fluidized-Bed Reactors, Circulating Fluidized Bed, Ultra–Rapid Pyrolyzer, Rotating Cone, Ablative Pyrolyzer dan Vacuum Pyrolyzer. Teknik pirolisis menghasilkan tiga macam produk akhir, yaitu bio-oil, arang (biochar) dan gas.

##plugins.themes.academic_pro.article.details##

Author Biographies

Sri Aulia Novita, Universitas Andalas

Program Doktoral Ilmu Pertanian

Santosa Santosa, Universitas Andalas

Program Studi Teknologi Industri Pertanian

Nofialdi Nofialdi, Universitas Andalas

Program Studi Agribisnis

Andasuryani Andasuryani, Universitas Andalas

Program Studi Teknik Pertanian

Ahmad Fudholi, University Kebangsaan Malaysia

Solar Energy Research Institute

How to Cite
Novita, S. A., Santosa, S., Nofialdi, N., Andasuryani, A., & Fudholi, A. (2021). Artikel Review: Parameter Operasional Pirolisis Biomassa. Agroteknika, 4(1), 53-67. https://doi.org/10.32530/agroteknika.v4i1.105

References

Abnisa, F., Arami-Niya, A., Daud, W. W., Sahu, J. N., & Noor, I. M. (2013). Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy conversion and management, 76, 1073-1082. https://doi.org/10.1016/j.enconman.2013.08.038
Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., & Olazar, M. (2014). Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel, 128, 162-169. https://doi.org/10.1016/j.fuel.2014.02.074
Ayllon, M., Aznar, M., Sánchez, J. L., Gea, G., & Arauzo, J. (2006). Influence of temperature and heating rate on the fixed bed pyrolysis of meat and bone meal. Chemical Engineering Journal, 121(2-3), 85-96. https://doi.org/10.1016/j.cej.2006.04.013
Basu, P. (2010). Biomass gasification and pyrolysis: practical design and theory. Amsterdam, Netherlands: Academic press. https://doi.org/10.1016/b978-0-12-374988-8.00002-7
Bridgwater, A. V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 91(2–3), 87–102. https://doi.org/10.1016/S1385-8947(02)00142-0
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
Brown, R. C., & Holmgren, J. (2009). Fast pyrolysis and bio-oil upgrading. Gas, 13, 25. Retrive from https://www.researchgate.net/publication/204979128_Fast_pyrolysis_and_bio-oil_upgrading
Chang, G., Huang, Y., Xie, J., Yang, H., Liu, H., Yin, X., & Wu, C. (2016). The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Conversion and Management, 124, 587–597. https://doi.org/10.1016/j.enconman.2016.07.038
Cheng, W., & Zhao, Q. (2020). A modified quasi-boundary value method for a two-dimensional inverse heat conduction problem. Computers & Mathematics with Applications, 79(2), 293-302 https://doi.org/10.1016/j.camwa.2019.06.031
Chintala, V., Kumar, S., Pandey, J. K., Sharma, A. K., & Kumar, S. (2017). Solar thermal pyrolysis of non-edible seeds to biofuels and their feasibility assessment. Energy Conversion and Management, 153, 482–492. https://doi.org/10.1016/j.enconman.2017.10.029
Damanhuri, E. (2010). Pengelolaan Bahan berbahaya dan beracun (B3). Bandung, Indonesia: Institusi Teknologi Bandung.
Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243–248. https://doi.org/10.1016/j.jaap.2004.07.003
Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695–716. https://doi.org/10.1016/j.renene.2017.04.035
Lazzari, E., Schena, T., Primaz, C. T., da Silva Maciel, G. P., Machado, M. E., Cardoso, C. A. L., ... & Caramão, E. B. (2016). Production and chromatographic characterization of bio-oil from the pyrolysis of mango seed waste. Industrial Crops and Products, 83, 529-536. https://doi.org/10.1016/j.indcrop.2015.12.073
Encinar, J. M., Beltran, F. J., Bernalte, A., Ramiro, A., & Gonzalez, J. F. (1996). Pyrolysis of two agricultural residues: olive and grape bagasse. Influence of particle size and temperature. Biomass and Bioenergy, 11(5), 397-409. https://doi.org/10.1016/S0961-9534(96)00029-3
Fassinou, W. F., Van de Steene, L., Toure, S., Volle, G., & Girard, P. (2009). Pyrolysis of Pinus pinaster in a two-stage gasifier: Influence of processing parameters and thermal cracking of tar. Fuel processing technology, 90(1), 75-90. https://doi.org/10.1016/j.fuproc.2008.07.016
Garcia-Perez, M., Shen, J., Wang, X. S., & Li, C. Z. (2010). Production and fuel properties of fast pyrolysis oil/bio-diesel blends. Fuel Processing Technology, 91(3), 296-305 https://doi.org/10.1016/j.fuproc.2009.10.012
Belotti, G., de Caprariis, B., De Filippis, P., Scarsella, M., & Verdone, N. (2014). Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass and Bioenergy, 61, 187-195. https://doi.org/10.1016/j.biombioe. 2013.12.011
Guedes, R. E., Luna, A. S., & Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of analytical and applied pyrolysis, 129, 134-149. https://doi.org/10.1016/j.jaap.2017.11.019
Hakiem, Ilmiawan. (2011). Pengaruh Abu Sekam sebagai Cementitious Terhadap Beton.
El-barbary, M. H., Steele, P. H., & Ingram, L. (2009). Characterization of fast pyrolysis bio-oils produced from pretreated pine wood. Applied biochemistry and biotechnology, 154(1), 3-13. http://dx.doi.org/10.1007/s12010-008-8445-3
Hornung, A. (2014). Transformation of biomass: theory to practice. New Jersey, United States: John Wiley & Sons.
Howe, D., Westover, T., Carpenter, D., Santosa, D., Emerson, R., Deutch, S., ... & Lukins, C. (2015). Field-to-fuel performance testing of lignocellulosic feedstocks: an integrated study of the fast pyrolysis–hydrotreating pathway. Energy & Fuels, 29(5), 3188-3197. https://doi.org/10.1021/acs.energyfuels.5b00304
Huang, A. N., Hsu, C. P., Hou, B. R., & Kuo, H. P. (2018). Production and separation of rice husk pyrolysis bio-oils from a fractional distillation column connected fluidized bed reactor. Powder Technology, 323, 588–593. https://doi.org/10.1016/j.powtec.2016.03.052
Hulet, C., Briens, C., Berruti, F., & Chan, E. W. (2005). A review of short residence time cracking processes. International Journal of Chemical Reactor Engineering, 3(1), 1–71. https://doi.org/10.2202/1542-6580.1139
Ji-Lu, Z. (2007). Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system. Journal of Analytical and Applied Pyrolysis, 80(1), 30-35. https://doi.org/10.1016/j.jaap.2006.12.030
Jung, S. H., Kang, B. S., & Kim, J. S. (2008). Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system. Journal of Analytical and Applied Pyrolysis, 82(2), 240-247. https://doi.org/10.1016/j.jaap.2008.04.001
Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140. https://doi.org/10.1016/j.rser.2015.12.185
Kim, K. H., Eom, I. Y., Lee, S. M., Choi, D., Yeo, H., Choi, I. G., & Choi, J. W. (2011). Investigation of physicochemical properties of biooils produced from yellow poplar wood (Liriodendron tulipifera) at various temperatures and residence times. Journal of Analytical and Applied Pyrolysis, 92(1), 2-9. https://doi.org/10.1016/j.jaap.2011.04.002
Li, Z., Wang, L., Hays, T. S., & Cai, Y. (2008). Dynein-mediated apical localization of crumbs transcripts is required for Crumbs activity in epithelial polarity. Journal of Cell Biology, 180(1), 31–38. https://doi.org/10.1083/jcb.200707007
Mondal, S., Mondal, A. K., Chintala, V., Tauseef, S. M., Kumar, S., & Pandey, J. K. (2021). Thermochemical pyrolysis of biomass using solar energy for efficient biofuel production: a review. Biofuels, 12(2), 125-134. https://doi.org/10.1080/17597269.2018.1461512
Madadi, M., & Abbas, A. (2017). Lignin degradation by fungal pretreatment: a review. J. Plant Pathol. Microbiol, 8(2), 1-6. https://doi.org/10.4172/2157-7471.1000398
Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. In Energy and Fuels. https://doi.org/10.1021/ef0502397
Mohamed, A. R., Hamzah, Z., Daud, M. Z. M., & Zakaria, Z. (2013). The effects of holding time and the sweeping nitrogen gas Flowrates on the pyrolysis of EFB using a fixed–bed reactor. Procedia Engineering, 53, 185-191. https://doi.org/10.1016/j.proeng.2013.02.024
Islam, M. R., Parveen, M., & Haniu, H. (2010). Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis. Bioresource Technology, 101(11), 4162-4168. https://doi.org/10.1016/j.biortech.2009.12.137
Nachenius, R. W., Ronsse, F., Vanderbosh, R. H., & Prins, W. (2013). Biomass pyrolysis. Enschede, Netherlands: BTG Biomass Technology Group.
Ohliger, A., Förster, M., & Kneer, R. (2013). Torrefaction of beechwood: A parametric study including heat of reaction and grindability. Fuel, 104, 607-613. https://doi.org/10.1016/j.fuel.2012.06.112
Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248. https://doi.org/10.1016/j.rser.2009.07.005
Park, H. J., Park, Y. K., & Kim, J. S. (2008). Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis. Fuel Processing Technology, 89(8), 797-802. https://doi.org/10.1016/j.fuproc.2008.01.003
Pattiya, A., & Suttibak, S. (2012). Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit. Journal of Analytical and Applied Pyrolysis, 95, 227-235. https://doi.org/10.1016/j.jaap.2012.02.010
Perkins, G., Bhaskar, T., & Konarova, M. (2018). Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renewable and Sustainable Energy Reviews, 90, 292-315. https://doi.org/10.1016/j.rser.2018.03.048
Qureshi, K. M., Abnisa, F., & Daud, W. M. A. W. (2019). Novel helical screw-fluidized bed reactor for bio-oil production in slow-pyrolysis mode: A preliminary study. Journal of Analytical and Applied Pyrolysis, 142, 104605. https://doi.org/10.1016/j.jaap.2019.04.021
Ridhuan, K., & Suranto, J. (2017). Perbandingan Pembakaran Pirolisis Dan Karbonisasi Pada Biomassa Kulit Durian Terhadap Nilai Kalori. Turbo : Jurnal Program Studi Teknik Mesin, 5(1), 50–56. https://doi.org/10.24127/trb.v5i1.119
Li, R., Zhong, Z., Jin, B., & Zheng, A. (2012). Selection of temperature for bio-oil production from pyrolysis of algae from lake blooms. Energy & fuels, 26(5), 2996-3002. https://doi.org/10.1021/ef300180r
Sharifzadeh, M., Sadeqzadeh, M., Guo, M., Borhani, T. N., Murthy Konda, N. V. S. N., Garcia, M. C., Wang, L., Hallett, J., & Shah, N. (2019). The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Progress in Energy and Combustion Science, 71, 1–80. https://doi.org/10.1016/j.pecs.2018.10.006
Shen, J., Wang, X. S., Garcia-Perez, M., Mourant, D., Rhodes, M. J., & Li, C. Z. (2009). Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel, 88(10), 1810-1817. https://doi.org/10.1016/j.fuel.2009.05.001
Singh, B. (2018). 13-Rice husk ash. Retrived from https://doi.org/10.1016/B978-0-08-102156-9.00013-4
Sensoz, S., Demiral, İ., & Gerçel, H. F. (2006). Olive bagasse (Olea europea L.) pyrolysis. Bioresource technology, 97(3), 429-436. https://doi.org/10.1016/j.biortech.2005.03.007
Sensoz, S., & Angın, D. (2008). Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake in a fixed-bed reactor: Part 2. Structural characterization of pyrolysis bio-oils. Bioresource Technology, 99(13), 5498-5504. https://doi.org/10.1016/j.biortech.2007.11.004
Tripathi, M., Sahu, J. N., Ganesan, P., & Dey, T. K. (2015). Effect of temperature on dielectric properties and penetration depth of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS. Fuel, 153, 257-266. https://doi.org/10.1016/j.fuel.2015.02.118
Tsai, W. T., Lee, M. K., & Chang, Y. M. (2007). Fast pyrolysis of rice husk: Product yields and compositions. Bioresource technology, 98(1), 22-28. https://doi.org/10.1016/j.biortech.2005.12.005
Tsai, W. T., Chang, C. Y., & Lee, S. L. (1997). Preparation and characterization of activated carbons from corn cob. Carbon, 35(8), 1198-1200.
Uzun, B. B., Pütün, A. E., & Pütün, E. (2006). Fast pyrolysis of soybean cake: product yields and compositions. Bioresource technology, 97(4), 569-576. https://doi.org/10.1016/j.biortech.2005.03.026
Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933. https://doi.org/10.1016/j.fuel.2009.10.022
Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33–86. https://doi.org/10.1016/j.pecs.2017.05.004
Yeasmin, H., Mathews, J. F., & Ouyang, S. (1999). Rapid devolatilisation of Yallourn brown coal at high pressures and temperatures. Fuel, 78(1), 11-24. https://doi.org/10.1016/S0016-2361(98)00119-7
Zhao, X., Zhou, H., Sikarwar, V. S., Zhao, M., Park, A. H. A., Fennell, P. S., ... & Fan, L. S. (2017). Biomass-based chemical looping technologies: the good, the bad and the future. Energy & Environmental Science, 10(9), 1885-1910. https://doi.org/10.1039/c6ee03718f
Zhang, H., Gao, Z., Ao, W., Li, J., Liu, G., Fu, J., ... & Dai, J. (2017). Microwave-assisted pyrolysis of textile dyeing sludge using different additives. Journal of Analytical and Applied Pyrolysis, 127, 140-149. https://doi.org/10.1016/j.jaap.2017.08.014