Enhancement of Germination and Early Development of Sweet Corn Seeds Using Aerated Priming with KNO3 and Reverse Osmosis Water

##plugins.themes.academic_pro.article.main##

Ilham Muhklisin
Putri Santika
Zainani Nur Antika
Sandile Donald Makama

Abstract

The -sh2, bt2, su1, and se- genes in sweet corn cause faster seed deterioration and a lower germination rate. A potential solution to this issue is seed priming. Priming agents and the solution uptake method are key factors that affect the achievement of seed priming. This study aims to compare the influence of solution uptake methods in sweet corn seed priming as well as investigate the effect of KNO3 on the germination and early development of sweet corn plants. The research was conducted in the Seed processing lab of the Department of Agricultural Production, Politeknik Negeri Jember. The seeds used in this study were sweet corn seeds var. Enno 1401. The study was designed with a completely randomized design (CRD). Seven treatments, namely non-primed, KNO3 spraying, KNO3 soaking, KNO3 aeration, RO water spraying, RO water soaking, and RO water aeration, were observed. Data were analyzed using one-way ANOVA, followed by means analysis using Fisher’s LSD (least significant difference) test at P<0.05. The result showed that aeration priming performed better than spraying and soaking in terms of germination percentage, MGT, and GRI of sweet corn seeds. However, aeration priming with KNO3 gave lower results than RO water in terms of MGT and GRI. On the other hand, aeration priming with KNO3 aeration gave the highest result in dry weight.

##plugins.themes.academic_pro.article.details##

Author Biographies

Ilham Muhklisin, Politeknik Negeri Jember

Department of Agricultural Production

Putri Santika, Politeknik Negeri Jember

Department of Agricultural Production

Zainani Nur Antika, Politeknik Negeri Jember

Department of Agricultural Production

Sandile Donald Makama, Swaziland Ministry of Agriculture

Seed Quality Control Services

How to Cite
Muhklisin, I., Santika, P., Antika, Z. N., & Makama, S. D. (2024). Enhancement of Germination and Early Development of Sweet Corn Seeds Using Aerated Priming with KNO3 and Reverse Osmosis Water. Agroteknika, 7(3), 344-351. https://doi.org/10.55043/agroteknika.v7i3.257

References

Adhikari, S., & Subedi, R. (2022). Effect Of Seed Priming Agents (GA3, PEG, Hydropriming) In The Early Development Of Maize. Russian Journal of Agricultural and Socio-Economic Sciences, 9(129), 113–120. https://rjoas.com/issue-2022-09/article_11.pdf
Adnan, M., Abd-ur-Rahman, H., Asif, M., Hussain, M., Bilal, M. B., Adnan, M., ..., & Khalid, M. (2020). Seed priming; An effective way to improve plant growth. EC Agriculture, 6(6), 01–05. https://www.researchgate.net/profile/Fazal-Ur-Rehman-2/publication/344887216_Seed_Priming_An_Effective_Way_to_Improve_Plant_Growth/links/61973c1ad7d1af224b070549/Seed-Priming-An-Effective-Way-to-Improve-Plant-Growth.pdf
Ahmadvand, G., Soleymani, F., Saadatian, B., & Pouya, M. (2012). Effects of Seed Priming on Seed Germination and Seedling Emergence of Cotton Under Salinity Stress. World Applied Sciences Journal, 20(11), 1453–1458. https://www.researchgate.net/profile/Bijan-Saadatian/publication/288457838_Effects_of_seed_priming_on_seed_germination_and_seedling_emergence_of_cotton_under_salinity_stress/links/5ce5a7ce458515712ebb7d0a/Effects-of-seed-priming-on-seed-germination-and-seedling-emergence-of-cotton-under-salinity-stress.pdf
AL-Obaedi, A. I. (2022). Evaluation of the Effect of Different Priming Treatments on the Seed Germination of Maize (Zea mays. L) Based on In Vitro Conditions. Samarra Journal of Pure and Applied Science, 4(1), 71–80. https://doi.org/10.54153/sjpas.2022.v4i1.345
Alias, N. S. B., Billa, L., Muhammad, A., & Singh, A. (2018). Priming and temperature effects on germination and early seedling growth of some Brassica spp. Acta Horticulturae, 1225, 407–414. https://doi.org/10.17660/ActaHortic.2018.1225.57
Anosheh, H. P., Sadeghi, H., & Emam, Y. (2011). Chemical priming with urea and KNO3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. Journal of Crop Science and Biotechnology, 14(4), 289–295. https://doi.org/10.1007/s12892-011-0039-x
Bradford, K. J. (1986). Manipulation of Seed Water Relations Via Osmotic Priming to Improve Germination Under Stress Conditions. HortScience, 21(5), 1105–1112. https://doi.org/10.21273/HORTSCI.21.5.1105
Bradford, K. J., May, D. M., Hoyle, B. J., Skibinski, Z. S., Scott, S. J., & Tyler, K. B. (1988). Seed and Soil Treatments to Improve Emergence of Muskmelon from Cold or Crusted Soils. Crop Science, 28(6), 1001–1005. https://doi.org/10.2135/cropsci1988.0011183X002800060028x
Bujalski, W., Nienow, A. W., & Gray, D. (1989). Establishing The Large Scale Osmotic Priming of Onion Seeds by Using Enriched Air. Annals of Applied Biology, 115(1), 171–176. https://doi.org/10.1111/j.1744-7348.1989.tb06824.x
Esechie, H. A. (1994). Interaction of Salinity and Temperature on the Germination of Sorghum. Journal of Agronomy and Crop Science, 172(3), 194–199. https://doi.org/10.1111/j.1439-037X.1994.tb00166.x
FAOSTAT. (2023). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL
Ghassemi-Golezani, K., Chadordooz-Jeddi, A., Nasrollahzadeh, S., & Moghaddam, M. (2010). Effects of Hydro-Priming Duration on Seedling Vigour and Grain Yield of Pinto Bean (Phaseolus vulgaris L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 109–113. https://doi.org/https://doi.org/10.15835/nbha3813475
Ghobadi, M., Abnavi, M. S., Jalali-Honarmand, S. Mohammadi, G. R., & Ghobadi, E. (2012). Effects of seed priming with some plant growth regulators (Cytokinin and salicylic acid) on germination parameters in wheat (Triticum aestivum L.). Journal of Agricultural Technology, 8(7), 2157–2167. http://www.aatsea.org/images/conference_publications/pdf/v8_n7_12_December/2_IJAT_2012_8(7)_Shafiei Abnavi M_Agronomy.pdf
Guedes, A. C., & Cantliffe, D. J. (1981). Germination of Lettuce Seeds at High Temperature After Seed Priming. Journal of the American Society for Horticultural Science, 105(6), 777–778. https://www.cabidigitallibrary.org/doi/full/10.5555/19810391327
Hendricks, S. B., & Taylorson, R. B. (1974). Promotion of Seed Germination by Nitrate, Nitrite, Hydroxylamine, and Ammonium Salts. Plant Physiology, 54(3), 304–309. https://doi.org/10.1104/pp.54.3.304
Heryanto, F. S. S., Wirnas, D., & Ritonga, A. W. (2022). Diversity of twenty-three sweet corn (Zea mays L. saccharata) varieties in Indonesia. Biodiversitas Journal of Biological Diversity, 23(11), 6075–6081. https://doi.org/10.13057/biodiv/d231164
Heydecker, W., Higgis, J., & Turner, Y. J. (1975). Invigoration of seeds. Seed Science & Technology, 3, 881–888. https://cabidigitallibrary.org/doi/full/10.5555/19760342303
Lee, M.-H. (2001). Seed Deterioration Response of Different Genes of Sweet Corn during Long-term Storage. Korean Journal of Crop Science, 46(4), 317–320. https://koreascience.kr/article/JAKO200111922228558.page
Meena, R. P., Tripathi, S. C., Chander, S., Chhokar, R. S., & Sharma, R. K. (2001). Seed priming in moisture-stress conditions to improve growth and yield of wheat (Triticum aestivum). Indian Journal of Agronomy, 60(1), 99–103. https://doi.org/10.59797/ija.v60i1.4421
Mohammadi, G. R., & Amiri, F. (2010). The Effect of Priming on Seed Performance of Canola (Brassica napus L.) under Drought Stress. American-Eurasian Journal of Agricultural and Environmental Science, 9(2), 202–207. https://www.cabidigitallibrary.org/doi/full/10.5555/20113179677
Moreno, C., Seal, C. E., & Papenbrock, J. (2018). Seed priming improves germination in saline conditions for Chenopodium quinoa and Amaranthus caudatus. Journal of Agronomy and Crop Science, 204(1), 40–48. https://doi.org/10.1111/jac.12242
Nascimento, W. M. (2003). Muskmelon seed germination and seedling development in response to seed priming. Scientia Agricola, 60(1), 71–75. https://doi.org/10.1590/S0103-90162003000100011
Nciizah, A. D., Rapetsoa, M. C., Wakindiki, I. I., & Zerizghy, M. G. (2020). Micronutrient seed priming improves maize (Zea mays) early seedling growth in a micronutrient deficient soil. Heliyon, 6(8), e04766. https://doi.org/10.1016/j.heliyon.2020.e04766
Nerson, H., & Govers, A. (1986). Salt Priming of Muskmelon Seeds for Low-temperature Germination. Scientia Horticulturae, 28(1–2), 85–91. https://doi.org/10.1016/0304-4238(86)90127-5
Ngenoh, E., Mutai, B. K., Chelang’a, P. K., & Koech, W. (2015). Evaluation of Technical Efficiency of Sweet Corn Production among Smallholder Farmers in Njoro district , Kenya. Journal of Economics and Sustainable Development, 6(17), 183–193. https://core.ac.uk/download/pdf/234647227.pdf
Orchard, T. J. (1977). Estimating the parameters of plant seedling emergence. Seed Science and Technology, 5(1), 61–69. https://eurekamag.com/research/000/368/000368846.php
Pedrini, S., Balestrazzi, A., Madsen, M. D., Bhalsing, K., Hardegree, S. P., Dixon, K. W., & Kildisheva, O. A. (2020). Seed enhancement: getting seeds restoration‐ready. Restoration Ecology, 28(S3), S266–S275. https://doi.org/10.1111/rec.13184
Ramzan, A., Hafiz, I. A., & Abbasi, N. A. (2010). Effect Of Priming with Potassium Nitrate and Dehusking on Seed Germination of Gladiolus (Gladiolus Alatus). Pakistan Journal of Botany, 42(1), 247–258. http://pakbs.org/pjbot/PDFs/42(1)/PJB42(1)247.pdf
Santika, P., Muhklisin, I., & Makama, S. D. (2022). Effect of Aeration and KNO3 in Seed Priming on The Germination of Tomato (Solanum lycopersicum) Seeds. Agroteknika, 5(2), 151–160. https://doi.org/10.55043/agroteknika.v5i2.153
Santos, P. H. A. D., Pereira, M. G., Trindade, R. dos S., Cunha, K. S. da, Entringer, G. C., & Vettorazzi, J. C. F. (2014). Agronomic performance of super-sweet corn genotypes in the north of Rio de Janeiro. Crop Breeding and Applied Biotechnology, 14(1), 8–14. https://doi.org/10.1590/S1984-70332014000100002
Scott, S. J., Jones, R. A., & Williams, W. A. (1984). Review of Data Analysis Methods for Seed Germination. Crop Science, 24(6), 1192–1199. https://doi.org/10.2135/cropsci1984.0011183X002400060043x
Shah, T., Prasad, K., & Kumar, P. (2016). Maize-A potential source of human nutrition and health: A review. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1166995
Sharma, Y., Wadhawan, N., & Lakhawat, S. (2022). Analysis of nutritional composition of popular maize varieties. The Pharma Innovation Journal, 11(10), 238–241. https://www.thepharmajournal.com/archives/2022/vol11issue10S/PartD/S-11-9-318-387.pdf
Šírová, J., Sedlářová, M., Piterková, J., Luhová, L., & Petřivalský, M. (2011). The role of nitric oxide in the germination of plant seeds and pollen. Plant Science, 181(5), 560–572. https://doi.org/10.1016/j.plantsci.2011.03.014
Srivastava, A. K., Siddique, A., Sharma, M. K., & Bose, B. (2017). Seed Priming with Salts of Nitrate Enhances Nitrogen use Efficiency in Rice. Vegetos- An International Journal of Plant Research, 30(4), 99-104. https://doi.org/10.5958/2229-4473.2017.00199.9
Thakur, M., Sharma, P., & Anand, A. (2019). Seed Priming-Induced Early Vigor in Crops: An Alternate Strategy for Abiotic Stress Tolerance. In Priming and Pretreatment of Seeds and Seedlings (pp. 163–180). Springer Singapore. https://doi.org/10.1007/978-981-13-8625-1_8
Thongtip, A., Kaewsorn, A., & Chatbanyong, R. (2022). Effects of KNO3 Concentration and Aeration during Seed Priming on Seed Germination and Vigor of Papaya cv . Khaek Dam Kaset. Rajamangala University of Technology Srivijaya Research Journal, 14(1), 1–15. https://li01.tci-thaijo.org/index.php/rmutsvrj/article/view/242427
Yeoung, Y. R., Wilson, D. J., & Murray, G. A. (1995). Oxygen regulates imbibition of muskmelon seeds. Seed Science & Technology, 23, 843–850. https://www.cabidigitallibrary.org/doi/full/10.5555/19960304093