Karakteristik Fisik, Mekanik, dan Sensoris Bioplastik Pati Aren dengan Sodium Tripolifosfat
##plugins.themes.academic_pro.article.main##
Abstract
Penggunaan plastik sebagai bahan kemasan pangan terus meningkat secara global yang dapat menimbulkan dampak lingkungan yang serius. Salah satu solusi untuk mengatasi masalah tersebut adalah dengan mengembangkan biopolimer ramah lingkungan dari sumber terbarukan seperti tumbuhan, hewan, alga dan mikroorganisme. Penelitian ini bertujuan untuk memperoleh konsentrasi Pati Aren Terfosforilasi (PAT) yang menghasilkan bioplastik terbaik. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) dengan 11 taraf perlakuan konsentrasi PAT (b/v) dan tiga ulangan, sehingga diperoleh 33 unit percobaan. Data dianalisis dengan uji lanjut Beda Nyata Jujur (BNJ) (p<0,05). Hasil penelitian menunjukkan bahwa konsentrasi PAT sebesar 8% memberikan karakteristik terbaik. Ketebalan bioplastik meningkat seiring dengan meningkatnya konsentrasi PAT. Daya serap air dan minyak, laju transmisi uap air, modulus Young, dan kekuatan tarik menurun seiring dengan peningkatan konsentrasi PAT. Nilai biodegradasi dan perpanjangan bioplastik cenderung stabil dengan meningkatnya konsentrasi pati aren terfosforilasi. Tingkat kesukaan sensoris terhadap warna dan tekstur edible film cenderung meningkat seiring peningkatan konsentrasi PAT.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Alves, Z., Ferreira, N. M., Ferreira, P., & Nunes, C. (2022). Design of heat sealable starch-chitosan bioplastics reinforced with reduced graphene oxide for active food packaging. Carbohydrate Polymers, 291, 119517. https://doi.org/10.1016/j.carbpol.2022.119517
Anggraini, T., Ulfimarjan, Azima, F., & Yenrina, R. (2017). The effect of chitosan concentration on the characteristics of sago (metroxylon sp) starch bioplastics. Research Journal of Pharmaceutical Biological and Chemical Sciences, 8(1), 1339–1351. http://www.rjpbcs.com/pdf/2017_8(1)/%5B169%5D.pdf
Ansar, Nazaruddin, Azis, A. D., & Fudholi, A. (2021). Enhancement of bioethanol production from palm sap (Arenga pinnata (Wurmb) Merr) through optimization of Saccharomyces cerevisiae as an inoculum. Journal of Materials Research and Technology, 14, 548–554. https://doi.org/10.1016/j.jmrt.2021.06.085
ASTM American Standar Testing and Material E96/E96M-16. (2010, October 1). Test Methods for Water Vapor Transmission of Materials. West Conshohocken, PA: ASTM International. https://doi.org/10.1520/E0096_E0096M-10
Babaremu, K., Oladijo, O. P., & Akinlabi, E. (2023). Biopolymers: A suitable replacement for plastics in product packaging. Advanced Industrial and Engineering Polymer Research, 6(4), 333–340. https://doi.org/10.1016/j.aiepr.2023.01.001
Bajer, D., & Burkowska-But, A. (2022). Innovative and environmentally safe composites based on starch modified with dialdehyde starch, caffeine, or ascorbic acid for applications in the food packaging industry. Food Chemistry, 374, 131639. https://doi.org/10.1016/j.foodchem.2021.131639
Beghetto, V., Gatto, V., Conca, S., Bardella, N., Buranello, C., Gasparetto, G., & Sole, R. (2020). Development of 4-(4, 6-dimethoxy-1, 3, 5-triazin-2-yl)-4-methyl-morpholinium chloride cross-linked carboxymethyl cellulose films. Carbohydrate Polymers, 249, 116810. https://doi.org/10.1016/j.carbpol.2020.116810
Behera, L., Mohanta, M., & Thirugnanam, A. (2022). Intensification of yam-starch based biodegradable bioplastic film with bentonite for food packaging application. Environmental Technology & Innovation, 25, 102180. https://doi.org/10.1016/j.eti.2021.102180
Benítez, J. J., Ramírez-Pozo, M. C., Durán-Barrantes, M. M., Heredia, A., Tedeschi, G., Ceseracciu, L., …, & Amato, A. (2023). Bio-based lacquers from industrially processed tomato pomace for sustainable metal food packaging. Journal of Cleaner Production, 386, 135836. https://doi.org/10.1016/j.jclepro.2022.135836
Buonvino, S., Ciocci, M., Nanni, F., Cacciotti, I., & Melino, S. (2023). New vegetable-waste biomaterials by Lupin albus L. as cellular scaffolds for applications in biomedicine and food. Biomaterials, 293, 121984. https://doi.org/10.1016/j.biomaterials.2022.121984
Chen, N., Wang, Q., Wang, M.-X., Li, N., Briones, A. V, Cassani, L., … Gu, C.-M. (2022). Characterization of the physicochemical, thermal and rheological properties of cashew kernel starch. Food Chemistry: X, 15, 100432. https://doi.org/10.1016/j.fochx.2022.100432
Christwardana, M., Ismojo, I., & Marsudi, S. (2021). Physical, Thermal Stability, and Mechanical Characteristics of New Bioplastic Elastomer from Blends Cassava and Tannia Starches as Green Material. Molekul, 16(1), 46–56. http://dx.doi.org/10.20884/1.jm.2021.16.1.671
Cui, L., Wang, X., Szarka, G., Hegyesi, N., Wang, Y., Sui, X., & Pukánszky, B. (2022). Quantitative analysis of factors determining the enzymatic degradation of poly (lactic acid). International Journal of Biological Macromolecules, 209, 1703–1709. https://doi.org/10.1016/j.ijbiomac.2022.04.121
Esposito, F. P., Vecchiato, V., Buonocore, C., Tedesco, P., Noble, B., Basnett, P., & de Pascale, D. (2023). Enhanced production of biobased, biodegradable, Poly (3-hydroxybutyrate) using an unexplored marine bacterium Pseudohalocynthiibacter aestuariivivens, isolated from highly polluted coastal environment. Bioresource Technology, 368, 128287. https://doi.org/10.1016/j.biortech.2022.128287
Hassan, M. M., & Fowler, I. J. (2022). Thermal, mechanical, and rheological properties of micro-fibrillated cellulose-reinforced starch foams crosslinked with polysiloxane-based cross-linking agents. International Journal of Biological Macromolecules, 205, 55–65. https://doi.org/10.1016/j.ijbiomac.2022.02.017
Hong, L. G., Yuhana, N. Y., & Zawawi, E. Z. E. (2021). Review of bioplastics as food packaging materials. AIMS Materials Science, 8(2), 166–184. http://dx.doi.org/10.3934/matersci.2021012
Kalita, N. K., & Hakkarainen, M. (2023). Integrating biodegradable polyesters in a circular economy. Current Opinion in Green and Sustainable Chemistry, 40, 100751. https://doi.org/10.1016/j.cogsc.2022.100751
Kou, T., Faisal, M., Song, J., & Blennow, A. (2023). Stabilization of emulsions by high-amylose-based 3D nanosystem. Food Hydrocolloids, 135, 108171. https://doi.org/10.1016/j.foodhyd.2022.108171
Lisha, V. S., Kothale, R. S., Sidharth, S., & Kandasubramanian, B. (2022). A critical review on employing algae as a feed for polycarbohydrate synthesis. Carbohydrate Polymer Technologies and Applications, 4, 100242. https://doi.org/10.1016/j.carpta.2022.100242
Liutyi, R., Petryk, I., Tyshkovets, M., Myslyvchenko, O., Liuta, D., & Fyodorov, М. (2022). Investigating sodium phosphate binders for foundry production. Advances in Industrial and Manufacturing Engineering, 4, 100082. https://doi.org/10.1016/j.aime.2022.100082
Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 32. https://doi.org/10.3390/fib7040032
Marichelvam, M. K., Manimaran, P., Sanjay, M. R., Siengchin, S., Geetha, M., Kandakodeeswaran, K., …, & Gorbatyuk, S. (2022). Extraction and development of starch-based bioplastics from Prosopis Juliflora Plant: Eco-friendly and sustainability aspects. Current Research in Green and Sustainable Chemistry, 5, 100296. https://doi.org/10.1016/j.crgsc.2022.100296
Mohammed, A., Gaduan, A., Chaitram, P., Pooran, A., Lee, K.-Y., & Ward, K. (2023). Sargassum inspired, optimized calcium alginate bioplastic composites for food packaging. Food Hydrocolloids, 135, 108192. https://doi.org/10.1016/j.foodhyd.2022.108192
Nazarian, M., Mansourizadeh, A., & Abbasi, M. (2019). Preparation of blend hydrophilic polyetherimide-cellulose acetate hollow fiber membrane for oily wastewater treatment. Journal of Applied Membrane Science & Technology, 23(3). http://dx.doi.org/10.11113/amst.v23n3.159
Okokon, E. J., & Okokon, E. O. (2019). Proximate analysis and sensory evaluation of freshly produced apple fruit juice stored at different temperatures and treated with natural and artificial preservatives. Global Journal of Pure and Applied Sciences, 25(1), 31–37. https://doi.org/10.4314/gjpas.v25i1.5
Pérez-Bassart, Z., Martínez-Abad, A., Reyes, A., López-Rubio, A., & Fabra, M. J. (2023). Ultrasound-treatment as a promising strategy to develop biodegradable films obtained from mushroom waste biomass. Food Hydrocolloids, 135, 108174. https://doi.org/10.1016/j.foodhyd.2022.108174
Perez-Puyana, V., Cuartero, P., Jiménez-Rosado, M., Martínez, I., & Romero, A. (2022). Physical crosslinking of pea protein-based bioplastics: Effect of heat and UV treatments. Food Packaging and Shelf Life, 32, 100836. https://doi.org/10.1016/j.fpsl.2022.100836
Rahim, A., Dombus, S., Kadir, S., Hasanuddin, M., Laude, S., Aditya, J., & Karouw, S. (2020). Physical, physicochemical, mechanical, and sensory properties of bioplastics from phosphate acetylated arenga starches. Polish Journal of Food and Nutrition Sciences, 70(3). https://doi.org/10.31883/pjfns/120183
Rebolledo-Leiva, R., Moreira, M. T., & González-García, S. (2023). Progress of social assessment in the framework of bioeconomy under a life cycle perspective. Renewable and Sustainable Energy Reviews, 175, 113162. https://doi.org/10.1016/j.rser.2023.113162
Santana, R. F., Bonomo, R. C. F., Gandolfi, O. R. R., Rodrigues, L. B., Santos, L. S., dos Santos Pires, A. C., …, & Veloso, C. M. (2018). Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. Journal of Food Science and Technology, 55, 278–286. https://doi.org/10.1007/s13197-017-2936-6
Semple, K. E., Zhou, C., Rojas, O. J., Nkeuwa, W. N., & Dai, C. (2022). Moulded pulp fibers for disposable food packaging: A state-of-the-art review. Food Packaging and Shelf Life, 33, 100908. https://doi.org/10.1016/j.fpsl.2022.100908
Springle, N., Li, B., Soma, T., & Shulman, T. (2022). The complex role of single-use compostable bioplastic food packaging and foodservice ware in a circular economy: Findings from a social innovation lab. Sustainable Production and Consumption, 33, 664–673. https://doi.org/10.1016/j.spc.2022.08.006
Upadhyaya, A., & Sonawane, S. K. (2023). Palmyrah palm and its products (neera, jaggery and candy)—a review on chemistry and technology. Applied Food Research, 3(1), 100256. https://doi.org/10.1016/j.afres.2022.100256
Wang, H., Liao, Y., Wu, A., Li, B., Qian, J., & Ding, F. (2019). Effect of sodium trimetaphosphate on chitosan-methylcellulose composite films: Physicochemical properties and food packaging application. Polymers, 11(2), 368. https://doi.org/10.3390/polym11020368
Wang, Q., & Ma, Y. (2022). Characterization of calcium phosphate nanoparticles sequestered by phosphopeptides in response to heat treatment. LWT, 167, 113816. https://doi.org/10.1016/j.lwt.2022.113816
Wang, Z.-Y., Zhang, X.-W., Ding, Y.-W., Ren, Z.-W., & Wei, D.-X. (2023). Natural biopolyester microspheres with diverse structures and surface topologies as micro-devices for biomedical applications. Smart Materials in Medicine, 4, 15–36. https://doi.org/10.1016/j.smaim.2022.07.004
Yang, J., Dong, X., Wang, J., Ching, Y. C., Liu, J., Li, C., …, & Xu, S. (2022). Synthesis and properties of bioplastics from corn starch and citric acid-epoxidized soybean oil oligomers. Journal of Materials Research and Technology, 20, 373–380. https://doi.org/10.1016/j.jmrt.2022.07.119