Optimasi Kultur Kalus dan Profil Metabolit Gambir (Uncaria gambir (Hunter) Roxb) Secara in Vitro

##plugins.themes.academic_pro.article.main##

Aprissilia Taifani Galuh Utomo
Aprizal Zainal
Yusniwati Yusniwati

Abstract

Kultur jaringan digunakan sebagai metode untuk memproduksi bibit gambir dengan kandungan katekin tinggi secara cepat dan dalam skala besar. Penelitian ini bertujuan untuk menganalisis pengaruh Thidiazuron (TDZ) dan Naphthalene Acetic Acid (NAA) terhadap perkembangan dan kandungan fitokimia pada kalus organogenik gambir melalui teknik in vitro. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) dengan pola faktorial dua faktor, yaitu konsentrasi TDZ (0; 0,04; dan 0,08 mg/L) dan NAA (0,5; 1; 1,5; dan 2 mg/L). Hasil penelitian menunjukkan bahwa TDZ secara signifikan memengaruhi kandungan klorofil pada kalus, dengan konsentrasi 0 mg/L dan 0,04 mg/L lebih efektif dibandingkan 0,08 mg/L. Kalus organogenik yang diberi perlakuan TDZ dan NAA menunjukkan aktivitas metabolit sekunder, termasuk terpenoid, flavonoid, alkaloid, tanin, dan fenol, yang teridentifikasi melalui uji histokimia.

##plugins.themes.academic_pro.article.details##

Author Biographies

Aprissilia Taifani Galuh Utomo, Universitas Andalas

Program Studi Agronomi Fakultas Pertanian

Aprizal Zainal , Universitas Andalas

Program Studi Agroteknologi Fakultas Pertanian

Yusniwati Yusniwati, Universitas Andalas

Program Studi Agroteknologi Fakultas Pertanian

How to Cite
Utomo, A. T. G., Zainal , A., & Yusniwati, Y. (2024). Optimasi Kultur Kalus dan Profil Metabolit Gambir (Uncaria gambir (Hunter) Roxb) Secara in Vitro. Agroteknika, 7(4), 618-629. https://doi.org/10.55043/agroteknika.v7i4.416

References

Azadvari, E., Hagh, Z. G., Ebrahimi, A., & Bodaghi, H. (2022). Expression of CrMPK3 and alkaloid synthesis genes with antioxidants in callus of Catharanthus roseus in response to polyethylene glycol. Industrial Crops and Products, 178(January), 114634. https://doi.org/10.1016/j.indcrop.2022.114634
Babich, O., Sukhikh, S., Pungin, A., Ivanova, S., Asyakina, L., & Prosekov, A. (2020). Modern Trends in the In Vitro Production and Use of Callus, Suspension Cells and Root Cultures of Medicinal Plants. Molecules, 25(24), 1–18. https://doi.org/10.3390/molecules25245805
Badan Pusat Statistik Sumatera Barat. (2023). Volume dan Nilai Ekspor Gambir Sumatera Barat 2019-2021. https://sumbar.bps.go.id
Chandran, H., Meena, M., Barupal, T., & Sharma, K. (2020). Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnology Reports, 26, 1–10. https://doi.org/10.1016/j.btre.2020.e00450
Faramayuda, F., Elfahmi, & Ramelan, R. S. (2016). Optimasi induksi kalus tanaman cabe jawa (Piper retrofractum Vahl) dengan berbagai variasi zat penatur tumbuh. Kartika Jurnal Ilmiah Farmasi, 4(2), 21–25. https://doi.org/10.26874/kjif.v4i2.62
Gaur, A., Kumar, P., Thakur, A. K., & Srivastava, D. K. (2016). In vitro plant regeneration studies and their potential applications in Populus spp.: a review. Israel Journal of Plant Sciences, 63(2), 77–84. https://doi.org/10.1080/07929978.2015.1076982
Hesami, M., & Daneshvar, M. H. (2018). Indirect organogenesis through seedling-derived leaf segments of ficus religiosa - a multipurpose woody medicinal plant. Journal of Crop Science and Biotechnology, 21(2), 129–136. https://doi.org/10.1007/s12892-018-0024-0
Ikeuchi, M., Favero, D. S., Sakamoto, Y., Iwase, A., Coleman, D., Rymen, B., & Sugimoto, K. (2019). Molecular mechanisms of plant regeneration. Annual Review of Plant Biology, 70, 377–406. https://doi.org/10.1146/annurev-arplant-050718-100434
Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. The Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/tpc.113.116053
Kruglova, N. N., Titova, G. E., & Seldimirova, O. A. (2018). Callusogenesis as an in vitro Morphogenesis Pathway in Cereals. Russian Journal of Developmental Biology, 49(5), 245–259. https://doi.org/10.1134/S106236041805003X
Kumar, N., Bhatt, V. D., Mastan, S. G., & Reddy, M. P. (2018). TDZ-induced plant regeneration in jatropha curcas: A promising biofuel plant. In Thidiazuron: From Urea Derivative to Plant Growth Regulator (pp. 419–428). https://doi.org/10.1007/978-981-10-8004-3_23
Li, Y., Xiao, J., & Jeong, B. R. (2022). Regeneration of Cotoneaster wilsonii Nakai through Indirect Organogenesis. Horticulturae, 8(9). https://doi.org/10.3390/horticulturae8090795
Ling, Q., Huang, W., Baldwin, A., & Jarvis, P. (2012). Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system. Plant Signaling & Behavior, 338(6107), 655–659. https://doi.org/10.1126/science.1225053
Lutfiah, A., & Habibah, N. A. (2022). Pengaruh pemberian elisitor ekstrak khamir pada pertumbuhan kultur kalus gembili dengan penambahan ZPT 2,4-D dan kinetin. Indonesian Journal of Mathematics and Natural Sciences, 45(2), 77–83. https://doi.org/10.15294/ijmns.v45i2.39728
Mackinney, G. (1941). Absorption of light by chlorophyll solutions. Journal of Biological Chemistry, 140(2), 315–322. http://dx.doi.org/10.1016/S0021-9258(18)51320-X
Magyar-Tabori, K., Debranszki, J., da Silva, J. A. T., Bulley, S. M., & Hudak, I. (2010). The role of cytokinins in shoot organogenesis in apple. Plant Cell, Tissue and Organ Culture, 101(3), 251–267. https://doi.org/10.1007/s11240-010-9696-6
Mahdiyah, D., Theana, M., ز, R., Sari, A., & Mukti, B. H. (2023). The antibacterial activity of gambir extract (Uncaria gambir (hunter) Roxb ) against Salmonella typhi. KnE Social Sciences, 2023, 747–757. https://doi.org/10.18502/kss.v8i9.13389
Mahmud, S. (2021). Induksi tunas dari eksplan tanaman gambir (Uncaria gambir (Hunter) Roxb) pada beberapa konsentrasi BAP secara in vitro [Skripsi]. http://scholar.unand.ac.id/92918/
Mok, M. C., Mok, D. W. S., Armstrong, D. J., Shudo, K., Isogai, Y., & Okamoto, T. (1982). Cytokinin activity of N-phenyl-N′-1, 2,3-thiadiazol-5-ylurea (thidiazuron). Phytochemistry, 21(7), 1509–1511. https://doi.org/10.1016/S0031-9422(82)85007-3
Mok, M. C., Mok, D. W. S., Turner, J. E., & Mujer, C. V. (2022). Biological and biochemical effects of cytokinin-active phenylurea derivatives in tissue culture systems. HortScience, 22(6), 1194–1197. https://doi.org/10.21273/HORTSCI.22.6.1194
Nadafzadeh, M., Mehdizadeh, S. A., & Soltanikazemi, M. (2018). Development of a computer vision system to predict peroxidase and polyphenol oxidase enzymes to evaluate the process of banana peel browning using genetic programming modeling. Scientia Horticulturae, 231, 201–209. https://doi.org/10.1016/j.scienta.2017.12.047
Nulfitriani, Basri, Z., & Suwastika, I. N. (2017). Induksi kalus dan inisiasi tunas bawang merah (Allium ascalonicum L.) lokal palu. Mitra Sains, 5(2), 11–18. https://jurnal.pasca.untad.ac.id/index.php/MitraSains/article/view/63
Pourebad, N., Motafakkerazad, R., Kosari-Nasab, M., Akhtar, N. F, & Movafeghi, A. (2015). The influence of TDZ concentrations on in vitro growth and production of secondary metabolites by the shoot and callus culture of Lallemantia iberica. Plant Cell, Tissue and Organ Culture, 122(2), 331–339. https://doi.org/10.1007/s11240-015-0769-4
Prashariska, K., Pitoyo, A., & Solichatun. (2021). Pengaruh indole-3-acetic acid (IAA) dan benzyl amino purine (BAP) terhadap induksi dan deteksi alkaloid kalus kamilen (Matricaria chamomilla L.). Jurnal Inovasi Pertanian, 23(2), 104–114. https://doi.org/10.33061/innofarm.v23i2.5916
Rahayu, T., Pratiwi, R. I. A., & Mubarakati, N. J. (2021). Profil metabolit daun kesambi (Schleichera oleosa) berdasarkan analisis histokimia dan in silico. Metamorfosa:Journal of Biological Sciences, 8(1), 156–165. https://ojs.unud.ac.id/index.php/metamorfosa/article/download/69735/39036
Ramirez, M. D. A., & Da Silva, R. F. (2018). Morpho-anatomical characterization of secondary somatic embryogenesis in Azadirachta indica (Meliaceae). Acta Botanica Mexicana, 122, 7–20. https://doi.org/10.21829/abm122.2018.1242
Restanto, D. P., Gumelar, B. S., Handoyo, T., Ubaidillah, M., & Prayoga, M. C. (2024). Pembentukan organogenesis tanaman porang (Amorphophallus muelleri B.) pada beberapa konsentrasi TDZ (Thidiazuron). Jurnal Penelitian Pertanian Terapan, 24(1), 1–7. http://dx.doi.org/10.25181/jppt.v24i1.2882
Sari, N., R, E. S., & Sumadi. (2014). Optimasi jenis dan konsentrasi ZPT dalam induksi kalus embriogenik dan regenerasi menjadi planlet pada Carica pubescens (Lenne & K.Koch). Biosaintifika: Journal of Biology & Biology Education, 6(1), 51–59. https://journal.unnes.ac.id/nju/biosaintifika/article/view/3785
Sion, R., Agustiansyah, & Timotiwu, P. B. (2024). Pengaruh nutripriming pada benih dengan zinc (Zn) terhadap pertumbuhan vegetatif tanaman jagung ungu hibrida. Jurnal Agrotek Tropika, 12(1), 189–197. http://dx.doi.org/10.23960/jat.v12i1.8199
Tan, B. C., Mahyuddin, A., Sockalingam, S. N. M. P., & Zakaria, A. S. I. (2023). Preliminary in vitro cytotoxic evaluation of Uncaria gambier (Hunt) Roxb extract as a potential herbal-based pulpotomy medicament. BMC Complementary Medicine and Therapies, 23(331), 1–16. https://doi.org/10.1186/s12906-023-04163-w
Utomo, A. T. G., Zainal, A., & Yusniwati. (2024). Induksi kalus tanaman gambir (Uncaria gambir (Hunter) Roxb.) pada beberapa konsentrasi 2,4-D secara in vitro. Agroteknika, 7(2), 164–174. https://doi.org/10.55043/agroteknika.v7i2.263
Vinoth, A., & Ravindhran, R. (2018). Thidiazuron: From urea derivative to plant growth regulator. In Thidiazuron: From Urea Derivative to Plant Growth Regulator (pp. 1–491). https://doi.org/10.1007/978-981-10-8004-3_10
Wang, P., & Grimm, B. (2021). Connecting chlorophyll metabolism with accumulation of the photosynthetic apparatus. Trends in Plant Science, 26(5), 484–495. https://doi.org/10.1016/j.tplants.2020.12.005
Xu, C., Zeng, B., Huang, J., Huang, W., & Liu, Y. (2015). Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning. PLOS ONE, 10(4), 39–45. https://doi.org/10.1371/journal.pone.0123356
Yunarto, N., Calvin, C. C., Sulistyowati, I., Oktoberia, I. S., Reswandaru, U. N., Elya, B., …, & Mihardja, L. K. (2023). Development and Validation of a High-Performance Liquid Chromatography-Based Method for Catechin Isolated from the Leaves of Gambir (Uncaria gambir Roxb). Tropical Journal of Natural Product Research, 7(3), 2569–2573. https://openurl.ebsco.com/EPDB%3Agcd%3A5%3A27399141/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A163682108&crl=c
Zainal, A., Ferita, I., Gustian, & Warnita. (2022). Kajian Karakterisasi Terkait Potensi Kadar Katekin Pada Tanaman Gambir (Uncaria gambir (Hunt) Roxb). Media Sains Indonesia. http://repo.unand.ac.id/49587/1/Buku - Gambir Katekin Aprizal Zainal 2022_compressed.pdf
Zainal, A., & Kasim, M. (2021). Aplikasi Thidiazuron secara In Vitro terhadap Multiplikasi Tunas Gambir (Uncaria gambir (Hunter) Roxb). Komisi Nasional Sumber Daya Genetik "Peran Bioteknologi Dan SDG Dalam Mendukung Pertanian Maju, Mandiri, Dan Modern”, 555–568. https://repository.pertanian.go.id/handle/123456789/14468
Zhang, J., Gai, M. Z., Li, X. Y., Li, T. L., & Sun, H. M. (2016). Somatic embryogenesis and direct as well as indirect organogenesis in Lilium pumilum DC. Fisch., an endangered ornamental and medicinal plant. Bioscience, Biotechnology and Biochemistry, 80(10), 1898–1906. https://doi.org/10.1080/09168451.2016.1194178
Zhao, S., Wang, H., Liu, K., Li, L., Yang, J., An, X., ..., & Zhang, Z. (2021). The role of JrPPOs in the browning of walnut explants. BMC Plant Biology, 21(1), 1–12. https://doi.org/10.1186/s12870-020-02768-8

Most read articles by the same author(s)